Tracking Primary Thermalization Events in Graphene with Photoemission at Extreme Time Scales.

نویسندگان

  • I Gierz
  • F Calegari
  • S Aeschlimann
  • M Chávez Cervantes
  • C Cacho
  • R T Chapman
  • E Springate
  • S Link
  • U Starke
  • C R Ast
  • A Cavalleri
چکیده

Direct and inverse Auger scattering are amongst the primary processes that mediate the thermalization of hot carriers in semiconductors. These two processes involve the annihilation or generation of an electron-hole pair by exchanging energy with a third carrier, which is either accelerated or decelerated. Inverse Auger scattering is generally suppressed, as the decelerated carriers must have excess energies higher than the band gap itself. In graphene, which is gapless, inverse Auger scattering is, instead, predicted to be dominant at the earliest time delays. Here, <8  fs extreme-ultraviolet pulses are used to detect this imbalance, tracking both the number of excited electrons and their kinetic energy with time-and angle-resolved photoemission spectroscopy. Over a time window of approximately 25 fs after absorption of the pump pulse, we observe an increase in conduction band carrier density and a simultaneous decrease of the average carrier kinetic energy, revealing that relaxation is in fact dominated by inverse Auger scattering. Measurements of carrier scattering at extreme time scales by photoemission will serve as a guide to ultrafast control of electronic properties in solids for petahertz electronics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure

Ultrafast electron thermalization—the process leading to carrier multiplication via impact ionization1,2, and hot-carrier luminescence3,4—occurs when optically excited electrons in a material undergo rapid electron–electron scattering3,5–7 to redistribute excess energy and reach electronic thermal equilibrium. Owing to extremely short time and length scales, the measurement and manipulation of ...

متن کامل

Primary structural dynamics in graphite

The structural dynamics of graphite and graphene are unique, because of the selective coupling between electron and lattice motions and hence the limit on electric and electro-optic properties. Here, we report on the femtosecond probing of graphite films (1–3 nm) using ultrafast electron crystallography in the transmission mode. Two time scales are observed for the dynamics: a 700 fs initial de...

متن کامل

Phonon-pump extreme-ultraviolet-photoemission probe in graphene: anomalous heating of Dirac carriers by lattice deformation.

We modulate the atomic structure of bilayer graphene by driving its lattice at resonance with the in-plane E_{1u} lattice vibration at 6.3  μm. Using time- and angle-resolved photoemission spectroscopy (tr-ARPES) with extreme-ultraviolet (XUV) pulses, we measure the response of the Dirac electrons near the K point. We observe that lattice modulation causes anomalous carrier dynamics, with the D...

متن کامل

Time-resolved two-photon photoemission of unoccupied electronic states of periodically rippled graphene on Ru(0001).

The unoccupied electronic states of epitaxially grown graphene on Ru(0001) have been explored by time- and angle-resolved two-photon photoemission. We identify a Ru derived resonance and a Ru/graphene interface state at 0.91 and 2.58 eV above the Fermi level, as well as three image-potential derived states close to the vacuum level. The most strongly bound, short-lived, and least dispersing ima...

متن کامل

Theory of Floquet band formation and local pseudospin textures in pump-probe photoemission of graphene.

Ultrafast materials science promises optical control of physical properties of solids. Continuous-wave circularly polarized laser driving was predicted to induce a light-matter coupled state with an energy gap and a quantum Hall effect, coined Floquet topological insulator. Whereas the envisioned Floquet topological insulator requires high-frequency pumping to obtain well-separated Floquet band...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 115 8  شماره 

صفحات  -

تاریخ انتشار 2015